3.2.9 \(\int \frac {\csc (e+f x)}{(a+b \sec ^2(e+f x))^{3/2}} \, dx\) [109]

3.2.9.1 Optimal result
3.2.9.2 Mathematica [A] (verified)
3.2.9.3 Rubi [A] (verified)
3.2.9.4 Maple [B] (verified)
3.2.9.5 Fricas [B] (verification not implemented)
3.2.9.6 Sympy [F]
3.2.9.7 Maxima [F]
3.2.9.8 Giac [B] (verification not implemented)
3.2.9.9 Mupad [F(-1)]

3.2.9.1 Optimal result

Integrand size = 23, antiderivative size = 80 \[ \int \frac {\csc (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=-\frac {\text {arctanh}\left (\frac {\sqrt {a+b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{(a+b)^{3/2} f}-\frac {b \sec (e+f x)}{a (a+b) f \sqrt {a+b \sec ^2(e+f x)}} \]

output
-arctanh(sec(f*x+e)*(a+b)^(1/2)/(a+b*sec(f*x+e)^2)^(1/2))/(a+b)^(3/2)/f-b* 
sec(f*x+e)/a/(a+b)/f/(a+b*sec(f*x+e)^2)^(1/2)
 
3.2.9.2 Mathematica [A] (verified)

Time = 0.57 (sec) , antiderivative size = 113, normalized size of antiderivative = 1.41 \[ \int \frac {\csc (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=-\frac {(a+2 b+a \cos (2 (e+f x))) \sec ^3(e+f x) \left (b \sqrt {a+b}+a \text {arctanh}\left (\frac {\sqrt {a+b-a \sin ^2(e+f x)}}{\sqrt {a+b}}\right ) \sqrt {a+b-a \sin ^2(e+f x)}\right )}{2 a (a+b)^{3/2} f \left (a+b \sec ^2(e+f x)\right )^{3/2}} \]

input
Integrate[Csc[e + f*x]/(a + b*Sec[e + f*x]^2)^(3/2),x]
 
output
-1/2*((a + 2*b + a*Cos[2*(e + f*x)])*Sec[e + f*x]^3*(b*Sqrt[a + b] + a*Arc 
Tanh[Sqrt[a + b - a*Sin[e + f*x]^2]/Sqrt[a + b]]*Sqrt[a + b - a*Sin[e + f* 
x]^2]))/(a*(a + b)^(3/2)*f*(a + b*Sec[e + f*x]^2)^(3/2))
 
3.2.9.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.98, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.261, Rules used = {3042, 4622, 25, 296, 291, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\csc (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin (e+f x) \left (a+b \sec (e+f x)^2\right )^{3/2}}dx\)

\(\Big \downarrow \) 4622

\(\displaystyle \frac {\int -\frac {1}{\left (1-\sec ^2(e+f x)\right ) \left (b \sec ^2(e+f x)+a\right )^{3/2}}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\int \frac {1}{\left (1-\sec ^2(e+f x)\right ) \left (b \sec ^2(e+f x)+a\right )^{3/2}}d\sec (e+f x)}{f}\)

\(\Big \downarrow \) 296

\(\displaystyle \frac {-\frac {\int \frac {1}{\left (1-\sec ^2(e+f x)\right ) \sqrt {b \sec ^2(e+f x)+a}}d\sec (e+f x)}{a+b}-\frac {b \sec (e+f x)}{a (a+b) \sqrt {a+b \sec ^2(e+f x)}}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {-\frac {\int \frac {1}{1-\frac {(a+b) \sec ^2(e+f x)}{b \sec ^2(e+f x)+a}}d\frac {\sec (e+f x)}{\sqrt {b \sec ^2(e+f x)+a}}}{a+b}-\frac {b \sec (e+f x)}{a (a+b) \sqrt {a+b \sec ^2(e+f x)}}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {-\frac {\text {arctanh}\left (\frac {\sqrt {a+b} \sec (e+f x)}{\sqrt {a+b \sec ^2(e+f x)}}\right )}{(a+b)^{3/2}}-\frac {b \sec (e+f x)}{a (a+b) \sqrt {a+b \sec ^2(e+f x)}}}{f}\)

input
Int[Csc[e + f*x]/(a + b*Sec[e + f*x]^2)^(3/2),x]
 
output
(-(ArcTanh[(Sqrt[a + b]*Sec[e + f*x])/Sqrt[a + b*Sec[e + f*x]^2]]/(a + b)^ 
(3/2)) - (b*Sec[e + f*x])/(a*(a + b)*Sqrt[a + b*Sec[e + f*x]^2]))/f
 

3.2.9.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 296
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d)) 
), x] + Simp[(b*c + 2*(p + 1)*(b*c - a*d))/(2*a*(p + 1)*(b*c - a*d))   Int[ 
(a + b*x^2)^(p + 1)*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, q}, x] && N 
eQ[b*c - a*d, 0] && EqQ[2*(p + q + 2) + 1, 0] && (LtQ[p, -1] ||  !LtQ[q, -1 
]) && NeQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4622
Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*sin[(e_.) + ( 
f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = FreeFactors[Cos[e + f*x], x]}, Si 
mp[1/(f*ff^m)   Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a + b*(c*ff*x)^n)^p 
/x^(m + 1)), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x 
] && IntegerQ[(m - 1)/2] && (GtQ[m, 0] || EqQ[n, 2] || EqQ[n, 4])
 
3.2.9.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1060\) vs. \(2(72)=144\).

Time = 1.18 (sec) , antiderivative size = 1061, normalized size of antiderivative = 13.26

method result size
default \(\text {Expression too large to display}\) \(1061\)

input
int(csc(f*x+e)/(a+b*sec(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/2/f/(a+b)^(5/2)/a*(b+a*cos(f*x+e)^2)*(cos(f*x+e)*ln(2/(a+b)^(1/2)*(((b+ 
a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)*cos(f*x+e)+((b+a*cos(f 
*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-cos(f*x+e)*a+b)/(1+cos(f*x+e) 
))*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^2+cos(f*x+e)*ln(2/(a+b)^( 
1/2)*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)*cos(f*x+e)+( 
(b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-cos(f*x+e)*a+b)/(1+ 
cos(f*x+e)))*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a*b+cos(f*x+e)*ln 
(-4*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)*cos(f*x+e)+(( 
b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+cos(f*x+e)*a+b)/(-1+ 
cos(f*x+e)))*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^2+cos(f*x+e)*ln 
(-4*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)*cos(f*x+e)+(( 
b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)+cos(f*x+e)*a+b)/(-1+ 
cos(f*x+e)))*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a*b+2*(a+b)^(3/2) 
*b+ln(2/(a+b)^(1/2)*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/ 
2)*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-cos( 
f*x+e)*a+b)/(1+cos(f*x+e)))*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a^ 
2+ln(2/(a+b)^(1/2)*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2 
)*cos(f*x+e)+((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)-cos(f 
*x+e)*a+b)/(1+cos(f*x+e)))*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*a*b 
+ln(-4*(((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*(a+b)^(1/2)*cos(f*x...
 
3.2.9.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 162 vs. \(2 (72) = 144\).

Time = 0.33 (sec) , antiderivative size = 344, normalized size of antiderivative = 4.30 \[ \int \frac {\csc (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\left [-\frac {2 \, {\left (a b + b^{2}\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) - {\left (a^{2} \cos \left (f x + e\right )^{2} + a b\right )} \sqrt {a + b} \log \left (\frac {2 \, {\left (a \cos \left (f x + e\right )^{2} - 2 \, \sqrt {a + b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right ) + a + 2 \, b\right )}}{\cos \left (f x + e\right )^{2} - 1}\right )}{2 \, {\left ({\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{3} b + 2 \, a^{2} b^{2} + a b^{3}\right )} f\right )}}, \frac {{\left (a^{2} \cos \left (f x + e\right )^{2} + a b\right )} \sqrt {-a - b} \arctan \left (\frac {\sqrt {-a - b} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{a + b}\right ) - {\left (a b + b^{2}\right )} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{{\left (a^{4} + 2 \, a^{3} b + a^{2} b^{2}\right )} f \cos \left (f x + e\right )^{2} + {\left (a^{3} b + 2 \, a^{2} b^{2} + a b^{3}\right )} f}\right ] \]

input
integrate(csc(f*x+e)/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")
 
output
[-1/2*(2*(a*b + b^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + 
 e) - (a^2*cos(f*x + e)^2 + a*b)*sqrt(a + b)*log(2*(a*cos(f*x + e)^2 - 2*s 
qrt(a + b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e) + a + 
2*b)/(cos(f*x + e)^2 - 1)))/((a^4 + 2*a^3*b + a^2*b^2)*f*cos(f*x + e)^2 + 
(a^3*b + 2*a^2*b^2 + a*b^3)*f), ((a^2*cos(f*x + e)^2 + a*b)*sqrt(-a - b)*a 
rctan(sqrt(-a - b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e 
)/(a + b)) - (a*b + b^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f 
*x + e))/((a^4 + 2*a^3*b + a^2*b^2)*f*cos(f*x + e)^2 + (a^3*b + 2*a^2*b^2 
+ a*b^3)*f)]
 
3.2.9.6 Sympy [F]

\[ \int \frac {\csc (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {\csc {\left (e + f x \right )}}{\left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(csc(f*x+e)/(a+b*sec(f*x+e)**2)**(3/2),x)
 
output
Integral(csc(e + f*x)/(a + b*sec(e + f*x)**2)**(3/2), x)
 
3.2.9.7 Maxima [F]

\[ \int \frac {\csc (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int { \frac {\csc \left (f x + e\right )}{{\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(csc(f*x+e)/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")
 
output
integrate(csc(f*x + e)/(b*sec(f*x + e)^2 + a)^(3/2), x)
 
3.2.9.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 503 vs. \(2 (72) = 144\).

Time = 0.86 (sec) , antiderivative size = 503, normalized size of antiderivative = 6.29 \[ \int \frac {\csc (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=-\frac {\frac {2 \, {\left (\frac {{\left (a b^{2} + b^{3}\right )} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2}}{a^{3} b \mathrm {sgn}\left (\cos \left (f x + e\right )\right ) + 2 \, a^{2} b^{2} \mathrm {sgn}\left (\cos \left (f x + e\right )\right ) + a b^{3} \mathrm {sgn}\left (\cos \left (f x + e\right )\right )} + \frac {a b^{2} + b^{3}}{a^{3} b \mathrm {sgn}\left (\cos \left (f x + e\right )\right ) + 2 \, a^{2} b^{2} \mathrm {sgn}\left (\cos \left (f x + e\right )\right ) + a b^{3} \mathrm {sgn}\left (\cos \left (f x + e\right )\right )}\right )}}{\sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b}} - \frac {\log \left ({\left | -\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b} - \sqrt {a + b} \right |}\right )}{{\left (a + b\right )}^{\frac {3}{2}} \mathrm {sgn}\left (\cos \left (f x + e\right )\right )} - \frac {\log \left ({\left | {\left (\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b}\right )} \sqrt {a + b} - a + b \right |}\right )}{{\left (a + b\right )}^{\frac {3}{2}} \mathrm {sgn}\left (\cos \left (f x + e\right )\right )} + \frac {\log \left ({\left | {\left (\sqrt {a + b} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - \sqrt {a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} + b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{4} - 2 \, a \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 2 \, b \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + a + b}\right )} \sqrt {a + b} - a - b \right |}\right )}{{\left (a + b\right )}^{\frac {3}{2}} \mathrm {sgn}\left (\cos \left (f x + e\right )\right )}}{2 \, f} \]

input
integrate(csc(f*x+e)/(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")
 
output
-1/2*(2*((a*b^2 + b^3)*tan(1/2*f*x + 1/2*e)^2/(a^3*b*sgn(cos(f*x + e)) + 2 
*a^2*b^2*sgn(cos(f*x + e)) + a*b^3*sgn(cos(f*x + e))) + (a*b^2 + b^3)/(a^3 
*b*sgn(cos(f*x + e)) + 2*a^2*b^2*sgn(cos(f*x + e)) + a*b^3*sgn(cos(f*x + e 
))))/sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x + 1/2*e)^4 - 2*a*tan(1/ 
2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a + b) - log(abs(-sqrt(a + 
 b)*tan(1/2*f*x + 1/2*e)^2 + sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x 
 + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a 
+ b) - sqrt(a + b)))/((a + b)^(3/2)*sgn(cos(f*x + e))) - log(abs((sqrt(a + 
 b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan(1/2*f*x 
 + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e)^2 + a 
+ b))*sqrt(a + b) - a + b))/((a + b)^(3/2)*sgn(cos(f*x + e))) + log(abs((s 
qrt(a + b)*tan(1/2*f*x + 1/2*e)^2 - sqrt(a*tan(1/2*f*x + 1/2*e)^4 + b*tan( 
1/2*f*x + 1/2*e)^4 - 2*a*tan(1/2*f*x + 1/2*e)^2 + 2*b*tan(1/2*f*x + 1/2*e) 
^2 + a + b))*sqrt(a + b) - a - b))/((a + b)^(3/2)*sgn(cos(f*x + e))))/f
 
3.2.9.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\csc (e+f x)}{\left (a+b \sec ^2(e+f x)\right )^{3/2}} \, dx=\int \frac {1}{\sin \left (e+f\,x\right )\,{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2}} \,d x \]

input
int(1/(sin(e + f*x)*(a + b/cos(e + f*x)^2)^(3/2)),x)
 
output
int(1/(sin(e + f*x)*(a + b/cos(e + f*x)^2)^(3/2)), x)